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Abstract
The problem of a trapped ion subjected to the action of two or more independent
Raman schemes is analysed through a suitable time-dependent perturbative
approach based on the factorization of the evolution operator in terms of other
unitary operators. We show that the dynamics of the system may be traced
back to an effective Hamiltonian up to a suitable dressing. Moreover, we give
the method to write the master equation corresponding to the case wherein
spontaneous decays occur.

PACS numbers: 39.10.+j, 42.55.Ye, 31.15.Md

1. Introduction

Over the last few decades, trapped ions have been exploited to realize interesting applications
in the field of quantum computing [1] and teleportation [2], and to test fundamental aspects of
quantum mechanics through the generation of nonclassical states [3].

The confinement of an atomic ion in a Paul trap is achieved by the action of a quadrupolar
time-dependent electric field that gives rise to a complicate motion which, in correspondence
to the stability regimes of the trap, is separable into a secular component and a micromotion.
The latter is a small and fast oscillation, while the former perfectly matches the motion of a
harmonic oscillator [4–6]. In several applications, a trapped ion can be treated as a finite-level
system, associated with the ‘relevant electronic levels’ of the ion, coupled with a bosonic
system describing the degrees of freedom related to the centre-of-mass motion (considered as
the motion of a harmonic oscillator) [7, 8]. In the simplest case, the finite-level system is a
two-level system. For instance, in experiments using a 9Be+ ion such two levels are hyperfine
sub-levels of the ion ground state [7].
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Driving a trapped ion by means of suitable laser beams, it is possible to induce ‘vibronic’
couplings—involving both vibrational (bosonic) and internal (fermionic) degrees of freedom—
giving rise to interesting dynamical effects and to the possibility of applications in quantum
technology [9–12]. In many relevant applications, the vibronic transitions involving a couple
of electronic levels—that, keeping in mind applications to quantum computing, will be called
‘qubit levels’ in the following—are induced via Raman couplings, i.e. the two 9Be+ hyperfine
sub-levels, for instance, are not directly coupled by a single resonant laser field; instead, a
third (‘auxiliary’) level, non-resonantly coupled by two laser fields with the qubit levels, is
exploited. The two associated detunings are fixed in such a way that, even if transitions
from/to the qubit levels to/from the auxiliary one ‘violate energy conservation’, second-order
processes involving the two qubit levels take place. Such a coupling scheme is usually called
‘� Raman coupling scheme’.

The analysis of a trapped ion single Raman scheme dynamics has been carried out
by means of the method called ‘adiabatic elimination’ [13–15], widely used in different
physical situations [16–20] and, in some sense, overcome by techniques based on unitary
transformations which decouple the auxiliary level [21, 22]. Recently, a more systematic
and transparent approach relying on a time-independent perturbative method [23–25] has
been used. Indeed, by switching to a suitable rotating frame, one is able to eliminate
the time dependence from the Hamiltonian. On the other hand, in the case where two �

Raman couplings are simultaneously active, there is no elementary way for removing the time
dependence from the Hamiltonian. Such a problem should not be regarded as an academical
one. In fact, in contrast, it is of crucial importance in the implementation of some models
aimed to realize suitable quantum state manipulations [13, 26].

Scope of the present contribution is to extend our previous work on (single) Raman
schemes for investigating the dynamics of a trapped ion double � Raman scheme (the further
extension to the case of n � 3 �-couplings is straightforward). In this case, it will be necessary
to introduce a time-dependent perturbative approach based on a suitable decomposition of the
time evolution operator of the system [27]. This new approach can be regarded as a non-
trivial generalization of the time-independent approach previously introduced and allows us to
study in a unique framework closely related models—such as the single and multiple Raman
couplings—whose Hamiltonians, depending on the particular case, may or may not be treated
by means of time-independent perturbative methods.

Our previous study of trapped ion single Raman schemes (see [23]) has put in evidence
that, in addition to the well-known Rabi oscillations involving the qubit levels, also fast
transitions between the qubit levels and the auxiliary one take place. Such transitions—
that have been called anomalous transitions—although too fast to be revealed directly in
ordinary experiments, in the case where the auxiliary level has a non-vanishing decay rate
towards the other two levels, have the effect of gradually injecting decoherence in the coherent
Rabi dynamics involving the qubit levels. This phenomenon has actually been observed
experimentally [12]. In the present paper, we will show that an analogous situation occurs in
the case of a double �-coupling.

We will also show that the behaviour of a trapped ion Raman scheme can be described
in a way somewhat similar to the ordinary interaction picture. Precisely, one can assume that
the outcome of an experimentally observed quantity O—to which is associated an abstract
quantum observable O (i.e. a self-adjoint operator)—at a certain time t is given by

O(t) = tr(Ōρeff(t)),

where ρeff(t) = Teff(t)ρ(0)Teff(t)
† is the density matrix of the system subject to an effective

evolution determined by Teff(t) (corresponding to the evolution obtainable by the procedure
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of ‘adiabatic elimination’) and Ō is a self-adjoint operator—a ‘coarse-grained observable’—
which takes into account suitable corrections to the effective evolution and the additional
effect of temporal coarse-graining of a real experimental setup, effect that can be reproduced by
means of a time-averaging procedure. We will further show that the coarse-grained observable
Ō can be obtained from the abstract observable O via a ‘coarse-graining superoperator’,

ĈG : O �→ Ō.

The paper is organized as follows. In the next section, we recall the result of the time-
independent perturbation theory applied on the physical situation corresponding to a single
trapped ion subjected to the action of a single Raman scheme. In section 3, we sketch a new
approach on time-dependent perturbation theory based on the idea of factorizing the evolution
operator in terms of simpler unitary operators. Since such an expansion is not unique, specific
solutions are given up to a gauge condition. Therefore, we discuss such a point and bring to
the light the connection between a specific gauge condition and the possibility of extracting
effective Hamiltonians. Subsequently, in section 4, we analyse the physical problem of two
Raman schemes simultaneously active applying the reported perturbation theory. The meaning
and validity of the coarse-graining approach are discussed in section 4.2. Finally, in section 5,
the case wherein the auxiliary level is a metastable one is considered and the relevant master
equation is given.

2. Single Λ Raman scheme

The physical system that we will study in this section is a three-level harmonically trapped
ion subjected to a single � Raman coupling scheme. Although this system can be obviously
considered as a special case of the double � Raman scheme which will be studied in section 4,
it is worth considering it here separately since, in this particular case, one can use a time-
independent perturbative technique. This will also allow us to better illustrate the time-
dependent perturbative method introduced in section 3.

The relevant Schrödinger picture Hamiltonian of the single � Raman coupling scheme is
given by

Ĥ�(t) = Ĥ 0 + Ĥ B + [h̄g13 e−i(�k13·�r−ω13t)σ̂13 + h.c.] + [h̄g23 e−i(�k23·�r−ω23t)σ̂23 + h.c.], (1)

where

Ĥ 0 =
∑

l=1,2,3

h̄ωlσ̂ll , Ĥ B = h̄ν
∑

j=x,y,z

â
†
j â

†
j , (2)

with σ̂lm ≡ |l〉 〈m| (with l, m = 1, 2, 3), {|l〉} being the considered three atomic levels and
{h̄ωl} the corresponding energies; â†

α (α = x, y, z) is the annihilation operator related to the
centre-of-mass harmonic motion along the direction α (we will denote the associated Fock
basis by {ψα

n }):

â†
x =

(µν

2h̄

)1/2
(

x̂ +
i

µν
p̂†

x

)
, . . . , â†

z =
(µν

2h̄

)1/2
(

ẑ +
i

µν
p̂†

z

)
,

with µ denoting the mass of the ion. For simplicity, we have assumed to deal with a 3D
degenerate parabolic trap with single frequency ν. The two laser fields responsible for the
coupling terms are characterized by complex strengths (proportional to the laser amplitude and
to the atomic dipole operator, and including the laser phases), wave vectors and frequencies
g13, �k13, ω13 and g23, �k23, ω23, respectively. The auxiliary level |3〉 is assumed to be dipole-
coupled to both the levels |1〉 and |2〉 via two far detuned lasers. Precisely, the two laser
frequencies are chosen in such a way that
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� ≡ ω3 − ω1 − ω13 = ω3 − ω2 − ω23, (3)

where the detuning � satisfies the condition

|�| � |g13|, |g23|, ν. (4)

A detailed analysis of such a model has been already performed in [23] by means of a
suitable (time-independent) operator perturbative approach. In that paper, it is shown that,
in addition to the standard Rabi oscillations between levels |1〉 and |2〉, also fast transitions
coupling levels |1〉 and |2〉 with the auxiliary level |3〉—the so-called anomalous transitions—
take place. Then, if the auxiliary level is an excited level with non-negligible decay rates
towards levels |1〉 and |2〉, the fast transitions to the auxiliary level, composed with decays,
gradually inject decoherence into the effective coherent cycle involving levels |1〉 and |2〉.
This result is actually in agreement with experimental observations [12].

In the following, we resume the main results obtained in [23] and we put them in a form
which is compatible with the time-dependent perturbative method which is used in the present
paper. The first step of our treatment consists in passing to the interaction picture (usually
named ‘rotating frame’) associated with the transformation

R̂(t) = e−iÂt , (5)

where

Â = (ω3 − �) (σ̂11 + σ̂22 + σ̂33) − ω13σ̂11 − ω23σ̂22

= ω1σ̂11 + ω2σ̂22 + (ω3 − �) σ̂33, (6)

in such a way that the time-dependent Hamiltonian Ĥ� is transformed into the following
time-independent Hamiltonian:

Ĥ := R̂(t)†(Ĥ�(t) − Â)R̂(t) = h̄�Ĥ = h̄�
(
σ̂33 + Ĥ

(�)
B + Ĥ �

)
, (7)

where Ĥ is a dimensionless Hamiltonian which is the sum of the three Hermitian operators,
Ĥ

(�)
B and Ĥ � being defined as

Ĥ
(�)
B := ν

�

∑
α=x,y,z

â†
αâ†

α,

Ĥ � :=
[g13

�
e−i�k13·�r σ̂13 + h.c.

]
+

[g23

�
e−i�k23·�r σ̂23 + h.c.

]
.

(8)

Considering the assumption given by the inequality (4), both Ĥ
(�)
B and Ĥ � may be thought

of as perturbations with respect to σ̂33. In fact, introducing the dimensionless perturbative
parameter

λ := g

�
, g ≡ max{ν, |g13|, |g23|}, (9)

both Ĥ
(�)
B and Ĥ � are first-order perturbations in λ:

Ĥ = Ĥ (λ) = σ̂33 + λ

∑

α=x,y,z

â†
αâ†

α + λ
∑
j=1,2

[
j3 e−i�kj3·�r σ̂j3 + h.c.], (10)

where 
 ≡ ν/g � 1, 
j,3 ≡ gj,3/g, |
j,3| � 1, and we note that, due to condition (4), λ 	 1.
Our time-independent perturbative approach relies on a suitable canonical transformation

eiẐ(λ) of the interaction picture Hamiltonian such that

h̄� eiẐ(λ)Ĥ (λ) e−iẐ(λ) = h̄�(σ̂33 + Ĉ(λ)), (11)

where Ĉ(λ) and Ẑ(λ) depend analytically on the perturbative parameter λ and Ĉ(λ) is a
constant of the motion with respect to the unperturbed dynamics, i.e. [σ̂33, Ĉ(λ)] = 0. This
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transformation allows us to give a very convenient decomposition of the evolution operator
associated with the rotating frame Hamiltonian:

exp
(
− i

h̄
Ĥt

)
= e−iẐ(λ) exp(i�σ̂33t) exp(i�Ĉ(λ)t) eiẐ(λ). (12)

At this point, truncating the power expansions

Ĉ(λ) = λĈ1 + λ2Ĉ2 + · · · + λnĈn + · · · , Ẑ(λ) = λẐ1 + λ2Ẑ2 + · · · + λnẐn + · · ·
at a given perturbative order, one obtains by formula (12) useful expressions of the evolution
operator. The operators Ĉ1, Ĉ2, . . . , Ẑ1, Ẑ2, . . . are not uniquely determined and can be
computed by a suitable iterative algebraic procedure. Fixing a certain gauge (namely, a
specific solution corresponding to a certain condition discussed in [23]), one obtains the
following results:

λĈ1 = Ĥ
(�)
B , (13)

λ2Ĉ2 = − |g13|2
�2

σ̂11 − |g23|2
�2

σ̂22 +
|g13|2 + |g23|2

�2
σ̂33 −

(g13g32

�2
e−i�k13·�r ei�k23·�r σ̂12 + h.c.

)
, (14)

where we have set g3j ≡ g∗
j3, and

λẐ1 = i
(g13

�
e−i�k13·�r σ̂13 − h.c.

)
+ i

(g23

�
e−i�k23·�r σ̂23 − h.c.

)
, (15)

λ2Ẑ2 = ν

�

{(g13

�
X̂13σ̂13 +

g31

�
X̂31σ̂31

)
+

(g23

�
X̂23σ̂23 +

g32

�
X̂32σ̂32

)}
, (16)

where 
X̂j3 := i

[
e−i�kj3·�r ,

∑
α=x,y,z

â†
αâ†

α

]
,

X̂3j := i

[
ei�kj3·�r ,

∑
α=x,y,z

â†
αâ†

α

]
= X̂

†
j3,

with j = 1, 2.
The interpretation of this result leads to a very interesting fact. Indeed, once the unitary

transformation eiZ(λ) has been applied to the interaction picture Hamiltonian Ĥ (recall
equation (11)), the time evolution of the system is described, at the second order in the
parameter λ, by the Hamiltonian

h̄�(σ̂33 + λĈ1 + λ2Ĉ2) = Ĥ12 + Ĥ3 := h̄�(Ĥ 12 + Ĥ 3), (17)

where, in order to display a more transparent formula, we set

Ĥ12 ≡ h̄�Ĥ 12 := h̄ν
∑

α=x,y,z

(
â†

αâ†
α

) ⊗ (σ̂11 + σ̂22) + h̄ω̆1σ̂11 + h̄ω̆2σ̂22

+ [h̄g12 e−i�k12·�r σ̂12 + h.c.], (18)

Ĥ3 ≡ h̄�Ĥ 3 := h̄ν
∑

α=x,y,z

(
â†

αâ†
α

) ⊗ σ̂33 + h̄(� + ω̆3)σ̂33, (19)

with

ω̆j = −|gj3|2
�

, j = 1, 2, ω̆3 = |g13|2 + |g23|2
�

,

g12 = g13g32

�
, �k12 = �k13 − �k23.
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Thus, the transformed Hamiltonian is the sum of two decoupled Hamiltonians H̃12 and
H̃3, [H̃12, H̃3] = 0, ‘living’ respectively in the ranges of the orthogonal projectors P̂g =
σ̂11 + σ̂22, P̂e = σ̂33. It is worth noting that the Hamiltonian H̃12 can be regarded as the rotating
frame Hamiltonian of a trapped two-level ion in interaction with a laser field characterized by
the following parameters:{

ω12 ≡ ω13 − ω23 = ω2 − ω1,

�k12 ≡ �k13 − �k23.
(20)

This effective coupling can be compared with the result found performing the adiabatic
elimination of level |3〉 (see [13]). The question of what the complete dynamics of the system
is now arises. First, it will be convenient to adopt the following notation. Given a couple of
functions f and h of the perturbative parameter λ, if f (λ) = h(λ) + O(λ3), we will simply
write

f (λ)
λ2

≈ h(λ).

Next, let us denote by Û� the evolution operator associated with the Raman scheme:

ih̄

(
d

dt
Û�

)
(t) = Ĥ�(t)Û�(t), Û�(0) = Id. (21)

Expressing Û� in terms of the evolution operator associated with the rotating frame
Hamiltonian yields

Û�(t) = R̂(t) exp
(
− i

h̄
Ĥt

)
. (22)

Now, according to what we have previously shown, we have

exp
(
− i

h̄
Ĥt

)
= e−iẐ(λ) exp

(
−i� eiẐ(λ)Ĥ (λ) e−iẐ(λ)t

)
eiẐ(λ)

λ2

≈ e−i(λẐ1+λ2Ẑ2) e−i�(σ̂33+λĈ1+λ2Ĉ2)t ei(λẐ1+λ2Ẑ2), (23)

where we have truncated the power expansions of Ẑ(λ) and Ĉ(λ) at the second order in λ;
hence,

Û�(t)
λ2

≈ e−iĤ 0t e−i(λẐ1(t)+λ2Ẑ2(t)) e−i�(λĈ1+λ2Ĉ2)t ei(λẐ1+λ2Ẑ2), (24)

with Ĥ 0 given by equation (2) and

Zk(t) := ei�σ̂33tZk e−i�σ̂33t . (25)

Observe that formula (24) suggests that one can consider a general perturbative decomposition
of the evolution operator associated with a quantum system, decomposition which, as it will be
shown in the next section, holds also in the case where the Hamiltonian of the system depends
on time.

3. Time-dependent perturbative expansion of the evolution operator of a quantum
system

Let us consider a time-dependent perturbed Hamiltonian Ĥ (λ; t), namely a self-adjoint linear
operator of the form

Ĥ (λ; t) = Ĥ 0 + Ĥ (λ; t), (26)

where Ĥ 0 is a self-adjoint operator—the ‘unperturbed component’—and Ĥ (λ; t) is a time-
dependent perturbation; precisely, we will assume that λ �→ Ĥ (λ; t) is (for the perturbative
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parameter λ in a certain neighbourhood of zero and for any t) a real analytic, self-adjoint
operator-valued function, with Ĥ (0; t) = 0. A real analytic function can be extended to a
domain in the complex plane. Keeping this fact in mind, we will specify that a given property
holds for λ real. For instance, the analytic function λ �→ Ĥ (λ; t) will take values in the
self-adjoint operators for λ real only.

Let Û (λ; t) be the evolution operator associated with Ĥ (λ; t), with initial time t0 = 0:

i ˙̂U(λ; t) = Ĥ (λ; t)Û (λ; t), Û (λ; 0) = Id, (27)

where the dot denotes the time derivative and we have set h̄ = 1. Then, we have that

Û (λ; t) = Û0(t)T (λ; t), (28)

where Û0(t) and T (λ; t) are, respectively, the evolution operator associated with the
unperturbed component Ĥ 0 (evolution operator which is obviously given by e−iĤ 0t ) and
the evolution operator associated with the interaction picture Hamiltonian

H̃ (λ; t) := Û0(t)
†Ĥ (λ; t)Û0(t). (29)

Let us explicitly note that, since H̃ (0; t) = 0, we have

T (0; t) = Id. (30)

We will suppose that the unperturbed evolution Û0(t) is explicitly known. Then the
problem is to determine perturbative expressions of T (λ; t). To this aim, the central point of
the paper is to assume for T (λ; t) the following general decomposition:

T (λ; t) = exp(−iZ(λ; t)) exp

(
−i

∫ t

0
C(λ; t) dt

)
exp(iZ(λ)), (31)

where (λ; t) �→ Z(λ; t), (λ; t) �→ C(λ; t) are operator-valued functions which depend
analytically on the perturbative parameter λ and Z(λ) ≡ Z(λ; 0); in agreement with
condition (30), we set

Ẑ(0; t) = 0, Ĉ(0; t) = 0, ∀t. (32)

It will be seen that decomposition (31) has a wide range of solutions and that a possible
choice for fixing a certain class of solutions is given by imposing the condition Ĉ(λ; t) = Ĉ(λ),
i.e. assuming that the function (λ; t) �→ Ĉ(λ; t) does not depend on time. This decomposition
includes, as particular cases, two decompositions of the evolution operator that have been
considered in the literature:

• the decomposition that is obtained setting Ẑ(λ; t) = 0,∀t, in formula (31), decomposition
which is at the root of the Magnus expansion of the evolution operator [28];

• the classical Floquet decomposition that holds in the case where the interaction picture
Hamiltonian depends periodically on time (say with period T)—decomposition which is
obtained setting Ĉ(λ; t) ≡ Ĉ(λ), Ẑ(λ; 0) = 0 and assuming that (λ, t) �→ Ẑ(λ; t) is
periodic with respect to time with period T—and that is at the root of the Floquet–Magnus
expansion of the evolution operator [28].

We are now ready to obtain a perturbative expansion of T (λ; t). In fact, if we require the
interaction picture evolution operator to satisfy the Schrödinger equation, we get

H̃ (λ; t)T (λ; t) = iṪ (λ; t)

= e−iẐ(λ;t)
∫ 1

0
(eisẐ(λ;t)Ż(λ; t) e−isẐ(λ;t)) ds exp

(
−i

∫ t

0
C(λ; t) dt

)
eiẐ(λ)

+ e−iẐ(λ;t)
∫ 1

0

(
exp

(
−is

∫ t

0
C(λ; t) dt

)
Ĉ(λ; t) exp

(
is

∫ t

0
C(λ; t) dt

))
ds

× exp

(
−i

∫ t

0
C(λ; t) dt

)
eiẐ(λ), (33)
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where we have used the remarkable formula (see, for instance, [29])

d

dt
eF = eF

∫ 1

0
(e−sF Ḟ esF ) ds =

∫ 1

0
(esF Ḟ e−sF ) ds eF , (34)

which extends to an operator-valued function t �→ F(t) the formula for the derivative of the
exponential of an ordinary function. Next, let us apply to each member of equation (33) the
operator eiẐ(λ;t) on the left and the operator e−iẐ(λ) exp

(
i
∫ t

0 C(λ; t) dt
)

on the right:

Adexp(iẐ(λ;t))H̃ (λ; t) =
∫ 1

0

(
Adexp(isẐ(λ;t))Ż(λ; t) + Adexp(−is

∫ t

0 C(λ;t)dt)Ĉ(λ; t)
)

ds, (35)

where we recall that, given linear operators X and Y, with X invertible, AdXY := XYX−1.

Then, since X is of the form eX, we can use the well-known relation

Adexp(X)Y = exp([X, ·])Y =
∞∑

k=0

1

k!
[X, ·]k Y, (36)

with [X, ·]k denoting the kth power ([X, ·]0 ≡ Id) of the superoperator [X, ·] defined by
[X, ·] Y := [X, Y ]. Eventually, applying formula (36) to equation (35) and performing the
integrals, we obtain

∞∑
k=0

ik

k!
[Ẑ(λ; t), ·]kH̃ (λ; t) =

∞∑
k=0

ik

(k + 1)!
[Ẑ(λ; t), ·]kŻ(λ; t)

+
∞∑

k=0

(−i)k

(k + 1)!

[∫ t

0
C(λ; t) dt, ·

]k

Ĉ(λ; t). (37)

Expanding the operators H̃ (λ; t), Ẑ(λ; t) and Ĉ(λ; t) in series of the perturbative parameter
λ as follows

H̃ (λ; t) =
∞∑

n=1

λnH̃n(t) (38)

Ẑ(λ; t) =
∞∑

n=1

λnZn(t), Ĉ(λ; t) =
∞∑

n=1

λnCn(t), (39)

formula (37) provides the possibility of determining the operators {Zk(t)} and {Ck(t)} at each
order of λ.

It is worth noting that, for each couple of operators Zk(t) and Ck(t) of a generic order k,
there is just one equation. Hence, to fix a solution it is necessary to impose some gauge and
moreover to determine the initial condition Zk(0).

Effective Hamiltonian as result of gauge conditions. A particularly interesting solution of
equation (37) is that corresponding to the condition that all the operators {Ck(t)} are constant
in time. In such a case, that is when Ck(t) = Ck(0) := Ck , by integrating formula (37) one
obtains the following order by order equations:

first order : λZ1(t) =
∫ t

0
λH̃1(s) ds − λC1t + λZ1(0);

second order : λ2Z2(t) = i
2

∫ t

0
[λZ1(s), λH̃1(s) + λC1] ds

+
∫ t

0
λ2H̃2(s) ds − λ2C2t + λ2Z2(0);

third order : . . .

(40)
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Imposing that all Ck(t)’s are time independent is not enough to determine them at all. A further
constraint that can be imposed is that they are such constant operators which ‘eliminate’ the
terms linearly dependent on time from Zk(t)’s (for details, see the appendix).

Depending on the structure of the Hamiltonian, the ‘removal’ of terms linear on time
from Zk(t) (with k = 1, . . . , N ) coincides with the removal of all terms which indefinitely
‘magnify’ with time. In such cases, the mentioned gauge condition provides (as better
clarified in the following) the possibility of describing the time evolution substantially as a
time-independent Hamiltonian dynamics (governed by the evolution operator e−iC(λ)t ) up to
unitary transformations (essentially e−iZ(λ;t) and e−iZ(λ;0)) that turn out to be near to the identity
at any instant of time, because their generators are bounded (i.e., not indefinitely magnifying
with time) and of the order of λ or higher.

The mentioned gauge condition can be better formalized through the following tern of
constraints:

(1) C(λ; t) = C(λ; 0) ≡ C(λ),∀t ;
(2) the function t �→ Z(λ; t) satisfies

lim
t→∞ t−1Z(λ; t) = 0; (41)

(3) the mean value of the function t �→ Z(λ; t) is zero, namely

lim
τ→∞

1

τ

∫ τ

0
Z(λ; t) dt = 0. (42)

In the following we shall concentrate to such cases. Therefore, from equation (31) it turns
out that

T (λ; t) = exp(−iZ(λ; t)) exp(−iC(λ)t) exp(iZ(λ)), (43)

with C(λ) = ∑∞
n=1 λnCn and exp(−iZ(λ; t)) a unitary operator. We here stress again that,

since Z(λ; t) is a bounded operator obtained as the sum of terms of the first order in λ or
higher, it turns out that the unitary operator exp(−iZ(λ; t)) approaches the identity operator
at any instant of time up to terms of the first or higher order in λ.

The complete time evolution of the system, according with equations (28) and (43), may
then be written as

Û (λ, t) = e−iĤ 0t e−iZ(λ;t) e−iC(λ)t eiZ(λ;0)

= e−iZ̃(λ;t) e−iĤ 0t e−iC(λ)t eiZ(λ;0) (44)

with

Z̃(λ; t) := e−iĤ 0tZ(λ; t) eiĤ 0t (45)

an operator whose time dependence is characterized by only oscillatory terms, due to the
choice of the suitable gauge condition as previously discussed.

Inserting the identity operator Id = eiC(λ)t eiĤ 0t e−iĤ 0t e−iC(λ)t on the right, it turns out

Û (λ, t) = e−iZ̃(λ;t) e−iZ̆(λ;t) e−iĤ 0t e−iC(λ)t (46)

with

Z̆(λ; t) = e−iĤ 0t e−iC(λ)tZ(λ; 0) eiC(λ)t eiĤ 0t .

This operator, as well as Z̃(λ, t), is constituted by constant in time and oscillatory terms
only and, moreover, such terms are of the first or higher order in λ.

As anticipated, the total evolution operator may be expressed as the product of two unitary
operators:

Û (λ, t) = Td(λ, t)Teff(λ, t) (47)
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with

Td(λ, t) := e−iZ̃(λ;t) e−iZ̆(λ;t) (48)

Teff(λ, t) := e−iĤ 0t e−iC(λ)t . (49)

We emphasize again that, since both Z̃(λ; t)’s and Z̆(λ; t)’s contain only stationary
and oscillating terms which are also terms of the first and higher orders in the perturbative
parameter, then we are legitimated to assume that these operators are small at any instant of
time. This circumstance leads to the fact that the dressing operator is near to the unity operator
at any instant of time.

Concerning the unitary operator e−iĤ 0t e−iC(λ)t , it may be thought of as a Schrödinger
picture evolutor factorized in terms of the unperturbed evolution e−iĤ 0t and the interaction
picture evolution e−iC(λ)t generated by the interaction picture Hamiltonian C(λ). The
corresponding Schrödinger picture effective Hamiltonian is given by Ĥ 0 + eiĤ 0tC(λ) e−iĤ 0t .

The complete time evolution may be considered in its exact form or truncated to some
order N. In this case, taking into account equation (39), equation (43) may be substituted by

T (λ; t) ≈ exp(−iZ(N)(λ; t)) exp(−iC(N)(λ)t) exp(iZ(N)(λ)), (50)

where

C(N)(λ) =
N∑

n=1

λnCn, Z(N)(λ; t) =
N∑

n=1

λnZn(t) (51)

are the up to Nth order ‘truncated’ C(λ) and Z(λ; t) operators, respectively.

4. Double Λ Raman schemes

Let us now apply such a perturbative approach to the specific problem of two simultaneously
active Raman schemes in trapped ion, and let us carry on our analysis up to the second order,
in the same spirit of [30].

The Schrödinger picture Hamiltonian describing a laser-driven trapped ion is given by

Ĥ��(t) = Ĥ 0 + Ĥ B + ĤR(t) (52)

with Ĥ 0 and Ĥ B given by equation (2), and

ĤR(t) = [h̄�13(t)σ̂13 + h.c.] + [h̄�23(t)σ̂23 + h.c.], (53)

being

�j3(t) = g′
j3 e−i(�k′

j3·�r−ω′
j3t) + g′′

j3 e−i(�k′′
j3·�r−ω′′

j3t), (54)

where g′
j3, ω

′
j3,

�k′
j3 (j = 1, 2) are coupling constant, frequency and wave vector related to the

first couple of Raman lasers, and g′′
j3, ω

′′
j3,

�k′′
j3 the analogous for the second Raman scheme.

Passing to the interaction picture related to Ĥ 0, one obtains

Ĥ��(t) = Ĥ B + H̃R(t) (55)

with

H̃R(t) = [h̄�̃13(t)σ̂13 + h.c.] + [h̄�̃23(t)σ̂23 + h.c.], (56)

�̃j3(t) = g′
j3 e−i(�k′

j3·�r−ω̃′
j3t) + g′′

j3 e−i(�k′′
j3·�r−ω̃′′

j3t), (57)

where we have introduced the interaction picture laser frequencies
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ω̃′
13 = ω′

13 − (ω3 − ω1), ω̃′
23 = ω′

23 − (ω3 − ω2);
ω̃′′

13 = ω′′
13 − (ω3 − ω1), ω̃′′

23 = ω′′
23 − (ω3 − ω2).

(58)

It is worth mentioning that in this situation we do not use a rotating frame like in the case of
single Raman scheme, because no rotating frame able to eliminate the whole time dependence
in the Hamiltonian exists. Therefore, we make the most natural choice of considering Ĥ 0 as
the generator of the transformation.

Introducing the following resonance conditions

ω̃′
13 = ω̃′

23 =: �′; ω̃′′
13 = ω̃′′

23 =: �′′,

it turns out

�̃j3(t) = g′
j3 e−i(�k′

j3·�r−�′t) + g′′
j3 e−i(�k′′

j3·�r−�′′t). (59)

In accordance with notation in equation (38) we take

Ĥ�� = λĤ��,1, Ĥ��,n = 0, n � 2, (60)

that is, the ‘perturbation’ (Ĥ B + H̃R(t)) is assumed to be a first-order perturbation.
Considering equations (55) and (60), putting them into equation (40) and taking into

account the gauge condition discussed in the previous section, one easily obtains

λC1 = Ĥ B (61)

λ2C2 = 1

2

(
α

′†
13α

′†
13

�′ +
α

′′†
13α

′′†
13

�′′

)
σ̂11 +

1

2

(
α

′†
23α

′†
23

�′ +
α

′′†
23α

′′†
23

�′′

)
σ̂22

− 1

2

(
α

′†
13α

′†
13

�′ +
α

′′†
13α

′′†
13

�′′ +
α

′†
23α

′†
23

�′ +
α

′′†
23α

′′†
23

�′′

)
σ̂33

+
1

2

[(
α

′†
13α

′†
23

�′ +
α

′′†
13α

′′†
23

�′′

)
σ̂12 + h.c.

]
(62)

with α′
j3 = g′

j3 e−i�k′
j3·�r , α′′

j3 = g′′
j3 e−i�k′′

j3·�r and j = 1, 2.

4.1. Factorization in terms of the effective dynamics and dressing

According with the decomposition in equation (50), the total evolution operator, up to the
second order, may be expressed as the product of two unitary operators:

Û (λ, t) = T
(2)
d (λ, t)T

(2)
eff (λ, t),

with T
(2)
d (λ, t) = exp(−iZ(2)(λ; t)) being the dressing operator and T

(2)
eff (λ, t) the effective

time evolution operator corrected up to the second order, hence associated with the effective
Hamiltonian Ĥ eff = Ĥ 0 + eiĤ 0tC(λ) e−iĤ 0t ,

Ĥ eff := Ĥ 0 + e−iĤ 0t (λC1 + λ2C2) eiĤ 0t

= Ĥ 0 + Ĥ B +
1

2

(
g′∗

13g
′∗
13

�′ +
g′′∗

13 g′′∗
13

�′′

)
σ̂11 +

1

2

(
g′∗

23g
′∗
23

�′ +
g′′∗

23 g′′∗
23

�′′

)
σ̂22

− 1

2

(
g′∗

13g
′∗
13

�′ +
g′′∗

13 g′′∗
13

�′′ +
g′∗

23g
′∗
23

�′ +
g′′∗

23 g′′∗
23

�′′

)
σ̂33

+
1

2

[(
g′∗

13g
′∗
23

�′ +
g′′∗

13 g′′∗
23

�′′

)
eiω12t σ̂12 + h.c.

]
(63)

with ω12 := ω2 − ω1.
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In the interaction picture associated with Ĥ 0, the perturbation C(2)(λ) = λC1 +λ2C2 turns
out to be exactly time independent (exactly, i.e. without rotating wave approximation).

It is worth noting that the effective Hamiltonian in this case is just the sum of the two
effective Hamiltonians by which it is possible to describe the two dynamics induced by each
one of the two Raman schemes when it is the only active one. Such a fact, which has been
assumed as an obvious result, is now formally proved.

4.2. Validity of the adiabatic elimination

At this point some words are worthy in order to better understand the meaning and the limits
of validity of the usual procedure consisting in evaluating the dynamics of the system as if
induced by the effective Hamiltonian only. To this end, consider the evolution of the mean
value of the generic operator:

〈Ô〉(t) = tr[ρ (t) Ô]

= tr
[
T̂d (t) T̂eff (t) ρ (0) T̂

†
eff (t) T̂

†
d (t) Ô

]
(64)

where ρ(t) is the density matrix describing the state of the system at time t.
In many physical contexts, it is not possible to establish with a high at will precision the

instant of time at which the observable Ô is measured. Therefore, in many realistic situations,
it is meaningless to consider the rigorously ‘instantaneous’ mean value of the operator, whereas
it is meaningful to average it over a time interval eventually considering a suitable probability
density distribution of the measurement time instant.

Denoting by ϕ(s) the probability density distribution of the instant of time at which the
measurement is performed, the time average of the expectation value of the operator Ô in the
time interval [t − T/2, t + T/2] is given by∫ T

2

− T
2

ds ϕ(s)〈Ô〉 (t + s) ds =
∫ T

2

− T
2

ds ϕ(s) tr[ρ (t + s) Ô]

=
∫ T

2

− T
2

ds ϕ(s) tr
[
T̂d (t + s) T̂eff (t + s) ρ (0) T̂

†
eff (t + s) T̂

†
d (t + s) Ô

]
=

∫ T
2

− T
2

ds ϕ(s) tr
[
T̂eff (t + s) ρ (0) T̂

†
eff (t + s) T̂

†
d (t + s) ÔT̂d (t + s)

]
(65)

which may be evaluated for all t � T
2 . Due to the presence of many random processes that

can render uncertain the instant of measurement, a Gaussian distribution could be appropriate

to describe the situation: ϕ(s) = 1
σ
√

2π
e− s2

2σ2 .
Assuming that the effective dynamics evolution operator does not change meaningfully

in the time interval
[− T

2 , T
2

]
, the average of the mean value of the operator Ô may be cast in

the form ∫ T
2

− T
2

ds ϕ(s)〈Ô〉 (t + s) ds � tr
[
T̂eff (t + s) ρ(0) T̂

†
eff (t + s)O(t)

]
(66)

with

O =
∫ T

2

− T
2

ds ϕ(s)T̂
†
d (t + s) ÔT̂d (t + s) . (67)

Technically speaking, at this point wherein the effective dynamics has been taken out
from the integral, we can consider the limit T −→ ∞ taking into account that the weight
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function ϕ(s) quickly approaches zero for large values of s. Therefore, finally, we reach the
definition

ĈG : O �→ O =
∫ +∞

−∞
ds ϕ(s)T̂

†
d (t + s) ÔT̂d (t + s) . (68)

The assumption that the effective dynamics is a good approximation of the complete
dynamics consists in the fact that the dressed and averaged (coarse-grained) operator O well
approximates the bare operator Ô.

The dressing operator T̂d may be expressed as follows:

T̂d (t) � 1̂ +
∑
ij

fij

({
âk, â

†
k

}
, λ, t

)
σ̂ij , (69)

where fij ’s vanish for λ → 0, that is, they are of first or higher order in the perturbative
parameter. Approximation in equation (69) is valid when the operator T̂d is truncated at any
order in the perturbative parameter. In the following, for the sake of notational brevity, we
omit the dependence of the fij operators: fij

({
âk, â

†
k

}
, λ, t

) =: fij .
Let us consider how the generic operator Ô does transform under the action of the dressing:

T̂
†
d (t) ÔT̂d (t) = Ô +

∑
ij

f
†
ij σ̂j iÔ +

∑
ij

fij Ôσ̂ij +
∑
ijkl

f
†
ij fij σ̂j iÔσ̂kl . (70)

Thanks to this formula, it is straightforward to find that deviations of the dressed operator
Ô from the bare one are of the first or higher order in the perturbative parameter. Moreover,
averaging the dressed operator as in equation (67) makes even smaller the corrections.

This circumstance enforces the reasonableness of exploiting the effective Hamiltonian
to describe the behaviour of the system, evaluating the expectation values of bare operators.
Nevertheless, has to be kept in mind that in general no warranty is given that the discrepancy
between the operators, its dressed counterpart and the coarse-grained operator is small enough
to be considered as negligible. Therefore, in principle, a case-by-case check would be
necessary.

5. Master equation and conclusive remarks

So far, the dynamics of the systems has been considered as purely unitary being traceable
back to coherent transitions involving the three levels, and induced by four external laser
fields responsible for two Raman couplings. Each one of such two Raman couplings gives
rise to an effective dynamics governed by an effective time-independent Hamiltonian up to a
dressing. Both the single Raman scheme effective couplings, and hence their sum, involve
the two lowest levels, while the highest one turns out to be decoupled. In other words, two
dressed states are coherently coupled and perform Rabi oscillations, while the third dressed
state is a stationary one.

Nevertheless, as mentioned in [31] and further considered in [23], the real dynamics of
a trapped ion subjected to Raman schemes involves such non-unitary elements imputable to
decays from the highest atomic level, the auxiliary one, to the lowest ones.

It can be considered that two independent channels are present, giving rise to a master
equation that in the Schrödinger picture may be cast in the form

�̇ = L(h̄−1Ĥ��(t);√
γ 3↓1σ̂31,

√
γ 3↓2σ̂32)�, (71)

where L(·)[·] is the Lindblad superoperator defined by

L
(
Ĝ; F̂

†
1 , F̂

†
2

)
� = −i[Ĝ, �] +

∑
j=1,2

(
F̂

†
j �F̂

†
j − 1

2

{
F̂

†
j F̂

†
j , �

})
, (72)
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with {·, ·} denoting the anti-commutator. The first part, i.e. the commutator, with Ĝ describes
the unitary evolution, while the second part is the dissipator describing the effects of the
environment, that is the decays. Of course, for γ 3↓1 = γ 3↓2 = 0, equation (71) reduces to
the standard Schrödinger equation of the Raman scheme, otherwise the Raman scheme with
relaxation of the auxiliary level |3〉 is considered.

Assuming that the dissipator is a first-order superoperator, the dressed master equation
correct up to the second order is given by

�̇ = L(h̄−1Ĥ eff(t);√
γ 3↓1σ̃31,

√
γ 3↓2σ̃32)�, (73)

with

σ̃3j := eiZ̃(λ;t)σ̂3j e−iZ̃(λ;t) ≈ σ̂3j + i[λZ1(λ; t), σ̂3j ]

= σ̂3j + β23(t) (σ̂22 − σ̂33) + iβ13(t)σ̂12

where

βj3(t) = α′
j3

ω′
j3

eiω′
j3t +

α′′
j3

ω′′
j3

eiω′′
j3t .

As in the case of a single Raman scheme active on the system we obtain the very expressive
result that, despite in the reference frame corresponding to the dressing eiẐ(λ;t) the coherent
dynamics of the two lowest levels is decoupled from the coherent and trivial dynamics of
the upper level, the incoherent (that is dissipative) dynamics maintains couplings between the
auxiliary and the two effective levels.

In conclusion, in this paper we have investigated the dynamics of a single trapped ion
subjected to the action of two simultaneously active Raman schemes founding two remarkable
results. The first one is the rigorous proof of the intuitive idea that the effective Hamiltonian
associated with such a physical scenario is given by the sum of the two effective Hamiltonians
corresponding to the two single Raman schemes. We have traced back this ‘additivity’ of
the effective Hamiltonians to the ‘vicinity’ between the bare operator and the corresponding
averaged dressed ones. The second result we have achieved in this paper generalizes a result
found in the case of single Raman coupling in the case wherein the auxiliary level is a
metastable one. In such a situation, indeed, we succeed in writing the relevant master equation
describing the ‘effective evolution’ of the system.

Appendix. Linear terms in Z(λ; t)

Consider the first of equation (40) with λH̃1(t) = ĤB + H̃R(t) according to equations (52),
(55) and (60). The integral

∫ t

0 λH̃1(s) ds gives rise to a term linear in time, that is ĤBt ,
and to constant and oscillatory terms originated by quantities of the form

∫ t

0 eiωt ds = eiωt−1
iω .

Therefore to eliminate linear terms in Z1(t) we need to choose λC1 = ĤB .
Consider now the second of equation (40) which may be cast in the convenient form

λ2Z2(t) = i

2

∫ t

0
ds

∫ s

0
dη[ĤR (η), H̃R(s)] + i

∫ t

0
ds

∫ s

0
dη[H̃R(η), ĤB]

+ i
∫ t

0
ds[λZ1(0), ĤB ] +

i

2

∫ t

0
ds[λZ1(0), H̃R(s)] − λ2C2t + λ2Z2(0). (A.1)

The most meaningful term in such an equation is given by∫ t

0
ds

∫ s

0
dη[H̃R(η), H̃R(s)] (A.2)



Time-dependent perturbation treatment of independent Raman schemes 4861

involving terms of the form

D(ωa, ωb) :=
∫ t

0
ds

∫ s

0
dη eiωas eiωbη = eiωat − 1

ωaωb

− ei(ωa+ωb)t − 1

ωb(ωa + ωb)
, (A.3)

giving rise to linear terms in time only in the two cases (ωa = 0;ωb �= 0) or (ωa;ωb = −ωa).
The first condition does not match our case, because by hypothesis we deal with non-vanishing
frequencies. The second condition corresponds to a resonance.

Observe in addition that other linear terms raising from∫ t

0
ds

∫ s

0
dη[H̃R(η), ĤB] (A.4)

may be compensated (i.e. eliminated) by∫ t

0
ds

∫ s

0
dη[λZ1(0), ĤB] (A.5)

provided a suitable choice of the arbitrary constant Z1(0).
Since no other linear terms are present, from equation (A.3) it straightforwardly follows

the result in equation (62).
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